skip to main content


Search for: All records

Creators/Authors contains: "Ma, Xiang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Motivated by the ever-increasing concerns on personal data privacy and the rapidly growing data volume at local clients, federated learning (FL) has emerged as a new machine learning setting. An FL system is comprised of a central parameter server and multiple local clients. It keeps data at local clients and learns a centralized model by sharing the model parameters learned locally. No local data needs to be shared, and privacy can be well protected. Nevertheless, since it is the model instead of the raw data that is shared, the system can be exposed to the poisoning model attacks launched by malicious clients. Furthermore, it is challenging to identify malicious clients since no local client data is available on the server. Besides, membership inference attacks can still be performed by using the uploaded model to estimate the client's local data, leading to privacy disclosure. In this work, we first propose a model update based federated averaging algorithm to defend against Byzantine attacks such as additive noise attacks and sign-flipping attacks. The individual client model initialization method is presented to provide further privacy protections from the membership inference attacks by hiding the individual local machine learning model. When combining these two schemes, privacy and security can be both effectively enhanced. The proposed schemes are proved to converge experimentally under non-lID data distribution when there are no attacks. Under Byzantine attacks, the proposed schemes perform much better than the classical model based FedAvg algorithm. 
    more » « less
  2. null (Ed.)
    Federated learning (FL) is a highly pursued machine learning technique that can train a model centrally while keeping data distributed. Distributed computation makes FL attractive for bandwidth limited applications especially in wireless communications. There can be a large number of distributed edge devices connected to a central parameter server (PS) and iteratively download/upload data from/to the PS. Due to limited bandwidth, only a subset of connected devices can be scheduled in each round. There are usually millions of parameters in the state-of-art machine learning models such as deep learning, resulting in a high computation complexity as well as a high communication burden on collecting/distributing data for training. To improve communication efficiency and make the training model converge faster, we propose a new scheduling policy and power allocation scheme using non-orthogonal multiple access (NOMA) settings to maximize the weighted sum data rate under practical constraints during the entire learning process. NOMA allows multiple users to transmit on the same channel simultaneously. The user scheduling problem is transformed into a maximum-weight independent set problem that can be solved using graph theory. Simulation results show that the proposed scheduling and power allocation scheme can help achieve a higher FL testing accuracy in NOMA based wireless networks than other existing schemes within the same learning time. 
    more » « less
  3. null (Ed.)
    ABSTRACT Self-organization is ubiquitous in biology, with viruses providing an excellent illustration of bioassemblies being much more than the sum of their parts. Following nature's lead, molecular self-assembly has emerged as a new synthetic strategy in the past 3 decades or so. Self-assembly approaches promise to generate complex supramolecular architectures having molecular weights of 0.5 to 100 MDa and collective properties determined by the interplay between structural organization and composition. However, biophysical methods specific to mesoscopic self-assembly, and presentations of the challenges they aim to overcome, remain underrepresented in the educational laboratory curriculum. We present here a simple but effective model for laboratory instruction that introduces students to the world of intermolecular forces and virus assembly, and to a cutting-edge technology, atomic force microscopy nanoindentation, which is able to measure the mechanical properties of single virus shells in vitro. In addition, the model illustrates the important idea that, at nanoscale, phenomena often have an inherent interdisciplinary character. 
    more » « less